Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly efficient printed quantum dot light-emitting diodes through ultrahigh-definition double-layer transfer printing

Abstract

Highly efficient and high-definition displays with deformable form factors are highly desirable for next-generation electronic devices. Despite the unique advantages of quantum dots (QDs), including high photoluminescence quantum yield, wide colour range and high colour purity, developing a QD patterning process for high-definition pixels and efficient QD light-emitting diodes (QLEDs) is in its early stages. Here we present highly efficient QLEDs through ultrahigh-definition double-layer transfer printing of a QD/ZnO film. Surface engineering of viscoelastic stamps enables double-layer transfer printing that can create RGB pixelated patterns with 2,565 pixels per inch and monochromic QD patterns with ~20,526 pixels per inch. The close packing of both QDs and ZnO nanoparticles by double-layer transfer printing substantially minimizes the leakage current, enhancing the external quantum efficiency of our devices to 23.3%. Furthermore, we demonstrate highly efficient wearable QLEDs fabricated by our technique. This study paves the way for the development of highly efficient, full-colour QD displays via the transfer printing technique, demonstrating great promise for next-generation display technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High-resolution intaglio transfer printing of QD/ZnO DL.
Fig. 2: Analysis of QD/ZnO DL films depending on the fabrication methods used.
Fig. 3: QD/ZnO DL transfer-printed QLEDs.
Fig. 4: Ultrathin wearable DL transfer-printed QLEDs.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available within this Article and its Supplementary Information. Any additional information can be obtained from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Zhang, Z. et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 603, 624–630 (2022).

    Article  ADS  Google Scholar 

  2. Liu, W. et al. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat. Mater. 22, 737–745 (2023).

    Article  ADS  Google Scholar 

  3. Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009).

    Article  ADS  Google Scholar 

  4. Triana, M. A., Hsiang, E.-L., Zhang, C., Dong, Y. & Wu, S.-T. Luminescent nanomaterials for energy-efficient display and healthcare. ACS Energy Lett. 7, 1001–1020 (2022).

    Article  Google Scholar 

  5. Koulieris, G. A. et al. Near-eye display and tracking technologies for virtual and augmented reality. Comput. Graphics Forum 38, 493–519 (2019).

    Article  Google Scholar 

  6. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  ADS  Google Scholar 

  7. Lee, T. et al. Bright and stable quantum dot light-emitting diodes. Adv. Mater. 34, 2106276 (2022).

    Article  Google Scholar 

  8. Coe, S., Woo, W. K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article  ADS  Google Scholar 

  9. Kagan, C. R., Lifshitz, E., Sargent, E. H. & Talapin, D. V. Building devices from colloidal quantum dots. Science 353, aac5523 (2016).

    Article  Google Scholar 

  10. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–112 (2014).

    Article  ADS  Google Scholar 

  11. Gao, L. et al. Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. Nat. Photon. 14, 227–233 (2020).

    Article  ADS  Google Scholar 

  12. Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article  ADS  Google Scholar 

  13. Qian, L., Zheng, Y., Xue, J. & Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photon. 5, 543–548 (2011).

    Article  ADS  Google Scholar 

  14. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    Article  ADS  Google Scholar 

  15. Nam, T. W. et al. Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution. Nat. Commun. 11, 3040 (2020).

    Article  ADS  Google Scholar 

  16. Kong, Y. L. et al. 3D printed quantum dot light-emitting diodes. Nano Lett. 14, 7017–7023 (2014).

    Article  ADS  Google Scholar 

  17. Kim, B. H. et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 15, 969–973 (2015).

    Article  ADS  Google Scholar 

  18. Ahn, J. et al. Ink-lithography for property engineering and patterning of nanocrystal thin films. ACS Nano 15, 15667–15675 (2021).

    Article  Google Scholar 

  19. Baek, S. et al. Generalised optical printing of photocurable metal chalcogenides. Nat. Commun. 13, 5262 (2022).

    Article  ADS  Google Scholar 

  20. Ho, S.-J., Hsu, H.-C., Yeh, C.-W. & Chen, H.-S. Inkjet-printed salt-encapsulated quantum dot film for UV-based RGB color-converted micro-light emitting diode displays. ACS Appl. Mater. Interfaces 12, 33346–33351 (2020).

    Article  Google Scholar 

  21. Azzellino, G., Freyria, F. S., Nasilowski, M., Bawendi, M. G. & Bulović, V. Micron-scale patterning of high quantum yield quantum dot LEDs. Adv. Mater. Technol. 4, 1800727 (2019).

    Article  Google Scholar 

  22. Hahm, D. et al. Direct patterning of colloidal quantum dots with adaptable dual-ligand surface. Nat. Nanotechnol. 17, 952–958 (2022).

    Article  ADS  Google Scholar 

  23. Wang, Y., Fedin, I., Zhang, H. & Talapin, D. V. Direct optical lithography of functional inorganic nanomaterials. Science 357, 385–388 (2017).

    Article  ADS  Google Scholar 

  24. Yang, J. et al. High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking. Nat. Commun. 11, 2874 (2020).

    Article  ADS  Google Scholar 

  25. Ko, J. et al. Direct photolithographic patterning of colloidal quantum dots enabled by UV-crosslinkable and hole-transporting polymer ligands. ACS Appl. Mater. Interfaces 12, 42153–42160 (2020).

    Article  Google Scholar 

  26. Choi, M. K. et al. Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015).

    Article  ADS  Google Scholar 

  27. Kim, L. et al. Contact printing of quantum dot light-emitting devices. Nano Lett. 8, 4513–4517 (2008).

    Article  ADS  Google Scholar 

  28. Kim, T.-H. et al. Heterogeneous stacking of nanodot monolayers by dry pick-and-place transfer and its applications in quantum dot light-emitting diodes. Nat. Commun. 4, 2637 (2013).

    Article  ADS  Google Scholar 

  29. Meng, T. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photon. 16, 297–303 (2022).

    Article  ADS  Google Scholar 

  30. Rizzo, A. et al. Hybrid light-emitting diodes from microcontact-printing double-transfer of colloidal semiconductor CdSe/ZnS quantum dots onto organic layers. Adv. Mater. 20, 1886–1891 (2008).

    Article  Google Scholar 

  31. Liu, S. et al. Top-emitting quantum dots light-emitting devices employing microcontact printing with electricfield-independent emission. Sci. Rep. 6, 22530 (2016).

    Article  ADS  Google Scholar 

  32. Park, J.-S. et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display. Nano Lett. 16, 6946–6953 (2016).

    Article  ADS  Google Scholar 

  33. Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2006).

    Article  ADS  Google Scholar 

  34. Lee, J. S. et al. Nanoscale-dewetting-based direct interconnection of microelectronics for a deterministic assembly of transfer printing. Adv. Mater. 32, 1908422 (2020).

    Article  ADS  Google Scholar 

  35. Kim, T.-H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photon. 5, 176–182 (2011).

    Article  ADS  Google Scholar 

  36. Shen, H. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photon. 13, 192–197 (2019).

    Article  ADS  Google Scholar 

  37. Song, J. et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv. Funct. Mater. 29, 1808377 (2019).

    Article  Google Scholar 

  38. Deng, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon. 16, 505–511 (2022).

    Article  ADS  Google Scholar 

  39. Kim, B. H. et al. Multilayer transfer printing for pixelated, multicolor quantum dot light-emitting diodes. ACS Nano 10, 4920–4925 (2016).

    Article  Google Scholar 

  40. Choi, M. K. et al. Extremely vivid, highly transparent and ultrathin quantum dot light-emitting diodes. Adv. Mater. 30, 1703279 (2017).

    Article  Google Scholar 

  41. Feng, X. et al. A finite-deformation mechanics theory for kinetically controlled transfer printing. J. Appl. Mech. 80, 061023 (2013).

    Article  ADS  Google Scholar 

  42. Wu, J., Dan, Q. & Liu, S. Effect of viscoelasticity of PDMS on transfer printing. In Proc. 2015 16th International Conference on Electronic Packaging Technology (ICEPT) 759–764 (IEEE, 2015).

  43. Bayley, F. A., Liao, J. L., Stavrinou, P. N., Chiche, A. & Cabral, J. T. Wavefront kinetics of plasma oxidation of polydimethylsiloxane: limits for sub-μm wrinkling. Soft Matter 10, 1155 (2014).

    Article  ADS  Google Scholar 

  44. Seghir, R. & Arscott, S. Controlled mud-crack patterning and self-organized cracking of polydimethylsiloxane elastomer surfaces. Sci. Rep. 5, 14787 (2015).

    Article  ADS  Google Scholar 

  45. Cho, H. et al. Soft contact transplanted nanocrystal quantum dots for light-emitting diodes: effect of surface energy on device performance. ACS Appl. Mater. Interfaces 7, 10828–10833 (2015).

    Article  Google Scholar 

  46. Dalal, E. H. Calculation of solid surface tensions. Langmuir 3, 1009–1015 (1987).

    Article  Google Scholar 

  47. Lee, S., Yoon, D., Choi, D. & Kim, T.-H. Mechanical characterizations of high-quality quantum dot arrays. Nanotechnology 24, 025702 (2013).

    Article  ADS  Google Scholar 

  48. Park, M. et al. Improving performance of inverted blue quantum-dot light-emitting diodes by adopting organic/inorganic double electron transport layers. Phys. Status Solidi RRL 14, 1900737 (2020).

    Article  Google Scholar 

  49. Zhang, X., Wang, S., Li, D., Wang, J. & Liu, H. Synergistic regulation of hole and electron transport layers for efficient injection balance in deep blue quantum dot light-emitting diodes. ACS Energy Lett. 5, 3184–3191 (2023).

    Google Scholar 

  50. Xu, H. et al. Dipole–dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nat. Photon. 18, 186–191 (2024).

    Article  ADS  Google Scholar 

  51. Shi, L. & Chen, S. Over 32.5% efficient top-emitting quantum-dot LEDs with angular-independent emission. ACA Appl. Mater. Interfaces 14, 30039–30045 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (grants nos. RS-2024-00402972, 2022R1A5A6000846 and 2021R1C1C1007997). This work was supported by IBS-R006-D1. This work was supported by the Samsung Research Funding & Incubation Center of Samsung Electronics under project no. SRFC-MA2002-03. Experiments at PLS-II were supported in part by MSIT, POSTECH and UNIST Central Research Facilities.

Author information

Authors and Affiliations

Authors

Contributions

J. Yoo, K.L., T.H., J. Yang and M.K.C. conceived and designed the experiments. K.L., H.H.S., J.H.K., S.I.P. and W.S.Y. synthesized and characterized the QDs. J. Yoo, U.J.Y., G.H.L. and J.I.K. performed and characterized the double-layer transfer printing. J. Yoo, U.J.Y., J.H.J., K.K., S.L., J.D.S. and M.H.S. fabricated and characterized the devices. J. Yoo, K.L., U.J.Y., M.S.B., T.H., J. Yang and M.K.C. analysed the data and wrote the manuscript. T.H., J. Yang and M.K.C. supervised the project. All authors contributed to the discussion and commented on the manuscript.

Corresponding authors

Correspondence to Taeghwan Hyeon, Jiwoong Yang or Moon Kee Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Caicai Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Figs. 1–24, Tables 1–4 and references.

Source data

Source Data Fig. 1

Pattern width and trench width comparison data.

Source Data Fig. 2

Impedance data, electron only device data.

Source Data Fig. 3

QLED performance data.

Source Data Fig. 4

Ultrathin QLED bending I-V curve, ultrathin QLED performance data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, J., Lee, K., Yang, U.J. et al. Highly efficient printed quantum dot light-emitting diodes through ultrahigh-definition double-layer transfer printing. Nat. Photon. 18, 1105–1112 (2024). https://doi.org/10.1038/s41566-024-01496-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-024-01496-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing