AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (24.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Synthesis of high-performance photocatalysts for solar-driven hydrogen production and carbon dioxide reduction

Chan Woo Lee1,2Jeong Hyun Kim1,2Megalamane S. Bootharaju1,2Taeghwan Hyeon1,2 ( )Byoung-Hoon Lee1,3 ( )
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
Show Author Information

Graphical Abstract

This review highlights key synthetic approaches for developing high-performance photocatalysts, categorized into two major strategies: modulation of photocatalytic supports and tailoring of co-catalysts. In subsequent chapters, examples of highly efficient photocatalyst developments guided by these strategies are presented, focusing on applications in hydrogen generation via plastic photoreforming and photocatalytic carbon dioxide reduction reactions.

Abstract

Photocatalysis presents a promising pathway for clean energy generation by leveraging solar energy under environmentally benign conditions with minimal pollutant emissions. However, its widespread application is hindered by low catalytic efficiency, stemming from limited light absorption, rapid recombination of photo-excited electrons, and suboptimal charge carrier potential for target reactions. This review discusses advanced strategies to enhance photocatalytic performance by modulating photocatalytic supports and refining co-catalysts. Techniques such as hydrogenation and extrinsic doping of photocatalytic supports are highlighted for their ability to broaden light absorption and prolong electron lifetimes. Additionally, the strategic design of co-catalysts, including the use of nanoclusters and atomically dispersed catalysts, is emphasized for optimizing charge carrier potential and improving atomic utilization efficiency. This review aims to guide researchers in developing high-performance photocatalysts for clean energy applications, including CO2 reduction and plastic waste photoreforming, thereby contributing to the advancement of sustainable energy technologies.

References

[1]
IEA. CO 2 Emissions in 2023 (International Energy Agency, 2024).
[2]

Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251.

[3]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[4]

Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

[5]

Ola, O.; Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C: Photochem. Rev. 2015, 24, 16–42.

[6]
Xia, D. H.; Chen, Q.; Li, Z. Y.; Luo, M. H.; Wong, P. K. 6-band gap engineered chalcogenide nanomaterials for visible light-induced photocatalysis. In Chalcogenide-Based Nanomaterials as Photocatalysts: A Volume in Micro and Nano Technologies. Khan, M. M., Ed.; Elsevier: Amsterdam, 2021; pp 135–172.
[7]

Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

[8]

Selcuk, S.; Zhao, X. H.; Selloni, A. Structural evolution of titanium dioxide during reduction in high-pressure hydrogen. Nat. Mater. 2018, 17, 923–928.

[9]

Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603.

[10]

Yan, Y.; Han, M. Y.; Konkin, A.; Koppe, T.; Wang, D.; Andreu, T.; Chen, G.; Vetter, U.; Morante, J. R.; Schaaf, P. Slightly hydrogenated TiO2 with enhanced photocatalytic performance. J. Mater. Chem. A 2014, 2, 12708–12716.

[11]

Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229.

[12]

Di Valentin, C.; Pacchioni, G.; Selloni, A. Reduced and n-type doped TiO2: Nature of Ti3+ species. J. Phys. Chem. C 2009, 113, 20543–20552.

[13]

Choi, W.; Termin, A.; Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 1994, 98, 13669–13679.

[14]

Takata, T.; Domen, K. Defect engineering of photocatalysts by doping of aliovalent metal cations for efficient water splitting. J. Phys. Chem. C 2009, 113, 19386–19388.

[15]

Wang, Q.; Hisatomi, T.; Jia, Q. X.; Tokudome, H.; Zhong, M.; Wang, C. Z.; Pan, Z. H.; Takata, T.; Nakabayashi, M.; Shibata, N. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 2016, 15, 611–615.

[16]

Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414.

[17]

Rusevich, L. L.; Kotomin, E. A.; Zvejnieks, G.; Maček Kržmanc, M.; Gupta, S.; Daneu, N.; Wu, J. C. S.; Lee, Y. G.; Yu, W. Y. Effects of Al doping on hydrogen production efficiency upon photostimulated water splitting on SrTiO3 nanoparticles. J. Phys. Chem. C 2022, 126, 21223–21233.

[18]

Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271.

[19]

Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects. Chem. Rev. 2014, 114, 9824–9852.

[20]

Ayu, D. G.; Gea, S.; Andriayani; Telaumbanua, D. J.; Piliang, A. F. R.; Harahap, M.; Yen, Z.; Goei, R.; Tok, A. I. Y. Photocatalytic degradation of methylene blue using N-doped ZnO/carbon dot (N-ZnO/CD) nanocomposites derived from organic soybean. ACS Omega 2023, 8, 14965–14984.

[21]

Prabakaran, E.; Pillay, K. Synthesis of N-doped ZnO nanoparticles with cabbage morphology as a catalyst for the efficient photocatalytic degradation of methylene blue under UV and visible light. RSC Adv. 2019, 9, 7509–7535.

[22]

Chen, M.; Wu, W.; Chen, Y. Y.; Pan, Q. Q.; Chen, Y. Z.; Zheng, Z. F.; Zheng, Y. J.; Huang, L. Y.; Weng, S. H. A fluorescent sensor constructed from nitrogen-doped carbon nanodots (N-CDs) for pH detection in synovial fluid and urea determination. RSC Adv. 2018, 8, 41432–41438.

[23]

Shahid, K.; Alshareef, M.; Ali, M.; Yousaf, M. I.; Alsowayigh, M. M.; Khan, I. A. Direct growth of nitrogen-doped carbon quantum dots on Co9S8 passivated on cotton fabric as an efficient photoelectrode for water treatment. ACS Omega 2023, 8, 41064–41076.

[24]

Kim, T. W.; Ping, Y.; Galli, G. A.; Choi, K. S. Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting. Nat. Commun. 2015, 6, 8769.

[25]

Eo, T.; Katsuki, T.; Berber, M. R.; Zahran, Z. N.; Mohamed, E. A.; Tsubonouchi, Y.; Alenad, A. M.; Althubiti, N. A.; Yagi, M. Handy protocol of nitrogen-doped BiVO4 photoanode for visible light-driven water oxidation. ACS Appl. Energy Mater. 2021, 4, 2983–2989.

[26]

Zhu, M. S.; Zhai, C. Y.; Qiu, L. Q.; Lu, C.; Paton, A. S.; Du, Y. K.; Goh, M. C. New method to synthesize S-doped TiO2 with stable and highly efficient photocatalytic performance under indoor sunlight irradiation. ACS Sustain. Chem. Eng. 2015, 3, 3123–3129.

[27]

Wang, W. L.; Wang, Z. F.; Liu, J. J.; Luo, Z.; Suib, S. L.; He, P.; Ding, G. Q.; Zhang, Z. G.; Sun, L. Y. Single-step one-pot synthesis of TiO2 nanosheets doped with sulfur on reduced graphene oxide with enhanced photocatalytic activity. Sci. Rep. 2017, 7, 46610.

[28]

Mirzaeifard, Z.; Shariatinia, Z.; Jourshabani, M.; Darvishi, S. M. R. ZnO photocatalyst revisited: Effective photocatalytic degradation of emerging contaminants using S-doped ZnO nanoparticles under visible light radiation. Ind. Eng. Chem. Res. 2020, 59, 15894–15911.

[29]

Lu, X. J.; Xu, L.; Ullah, I.; Li, H. B.; Xu, A. W. Sulfur-doped g-C3N4 photocatalyst for significantly steered visible light photocatalytic H2 evolution from water splitting. Catal. Sci. Technol. 2024, 14, 606–614.

[30]

Zhu, Z.; Liu, Z. X.; Tang, X.; Reeti, K.; Huo, P. W.; Wong, J. W. C.; Zhao, J. Sulfur-doped g-C3N4 for efficient photocatalytic CO2 reduction: Insights by experiment and first-principles calculations. Catal. Sci. Technol. 2021, 11, 1725–1736.

[31]

Vigneshwaran, M.; Ohta, T.; Iikubo, S.; Kapil, G.; Ripolles, T. S.; Ogomi, Y.; Ma, T. L.; Pandey, S. S.; Shen, Q.; Toyoda, T. et al. Facile synthesis and characterization of sulfur doped low bandgap bismuth based perovskites by soluble precursor route. Chem. Mater. 2016, 28, 6436–6440.

[32]

Feng, J. J.; Zhang, D. K.; Zhou, H. P.; Pi, M. Y.; Wang, X. D.; Chen, S. J. Coupling P nanostructures with P-doped g-C3N4 as efficient visible light photocatalysts for H2 Evolution and RhB degradation. ACS Sustain. Chem. Eng. 2018, 6, 6342–6349.

[33]

Shi, R.; Ye, H. F.; Liang, F.; Wang, Z.; Li, K.; Weng, Y. X.; Lin, Z. S.; Fu, W. F.; Che, C. M.; Chen, Y. Interstitial P-doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents. Adv. Mater. 2018, 30, 1705941.

[34]

Wei, X. J.; Akbar, M. U.; Raza, A.; Li, G. A review on bismuth oxyhalide based materials for photocatalysis. Nanoscale Adv. 2021, 3, 3353–3372.

[35]

Marks, M.; Jeppesen, H. S.; Lock, N. Tuneable phase, morphology, and performance of bismuth oxyhalide photocatalysts via microwave-assisted synthesis. ACS Appl. Mater. Interfaces 2022, 14, 23496–23506.

[36]

Shi, Y. B.; Zhan, G. M.; Li, H.; Wang, X. B.; Liu, X. F.; Shi, L. J.; Wei, K.; Ling, C. C.; Li, Z. L.; Wang, H. et al. Simultaneous manipulation of bulk excitons and surface defects for ultrastable and highly selective CO2 photoreduction. Adv. Mater. 2021, 33, 2100143.

[37]

Suzuki, H.; Kunioku, H.; Higashi, M.; Tomita, O.; Kato, D.; Kageyama, H.; Abe, R. Lead bismuth oxyhalides PbBiO2X (X = Cl, Br) as visible-light-responsive photocatalysts for water oxidation: Role of lone-pair electrons in valence band engineering. Chem. Mater. 2018, 30, 5862–5869.

[38]

Wang, Y. Q.; Xie, Y.; Yu, S. H.; Yang, K.; Shao, Y.; Zou, L. X.; Zhao, B. X.; Wang, Z. L.; Ling, Y.; Chen, Y. Ni doping in unit cell of BiOBr to increase dipole moment and induce spin polarization for promoting CO2 photoreduction via enhanced build-in electric field. Appl. Catal. B: Environ. 2023, 327, 122420.

[39]

Wang, Q.; Nakabayashi, M.; Hisatomi, T.; Sun, S.; Akiyama, S.; Wang, Z.; Pan, Z. H.; Xiao, X.; Watanabe, T.; Yamada, T. et al. Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat. Mater. 2019, 18, 827–832.

[40]

Ishikawa, A.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation ( λ ≤ 650 nm). J. Am. Chem. Soc. 2002, 124, 13547–13553.

[41]

Ida, S.; Okamoto, Y.; Matsuka, M.; Hagiwara, H.; Ishihara, T. Preparation of tantalum-based oxynitride nanosheets by exfoliation of a layered oxynitride, CsCa2Ta3O10− x N y , and their photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 15773–15782.

[42]

Balaz, S.; Porter, S. H.; Woodward, P. M.; Brillson, L. J. Electronic structure of tantalum oxynitride perovskite photocatalysts. Chem. Mater. 2013, 25, 3337–3343.

[43]

Xiao, J. D.; Nakabayashi, M.; Hisatomi, T.; Vequizo, J. J. M.; Li, W. P.; Chen, K. H.; Tao, X. P.; Yamakata, A.; Shibata, N.; Takata, T. et al. Sub-50 nm perovskite-type tantalum-based oxynitride single crystals with enhanced photoactivity for water splitting. Nat. Commun. 2023, 14, 8030.

[44]

Nandal, V.; Shoji, R.; Matsuzaki, H.; Furube, A.; Lin, L. H.; Hisatomi, T.; Kaneko, M.; Yamashita, K.; Domen, K.; Seki, K. Unveiling charge dynamics of visible light absorbing oxysulfide for efficient overall water splitting. Nat. Commun. 2021, 12, 7055.

[45]

Yoshida, H.; Pan, Z. H.; Shoji, R.; Nandal, V.; Matsuzaki, H.; Seki, K.; Lin, L. H.; Kaneko, M.; Fukui, T.; Yamashita, K. et al. An oxysulfide photocatalyst evolving hydrogen with an apparent quantum efficiency of 30% under visible light. Angew. Chem., Int. Ed. 2023, 62, e202312938.

[46]

Li, X.; Yu, J. G.; Low, J.; Fang, Y. P.; Xiao, J.; Chen, X. B. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 2485–2534.

[47]

Kraeutler, B.; Bard, A. J. Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates. J. Am. Chem. Soc. 1978, 100, 4317–4318.

[48]

Biswal, B. P.; Vignolo-González, H. A.; Banerjee, T.; Grunenberg, L.; Savasci, G.; Gottschling, K.; Nuss, J.; Ochsenfeld, C.; Lotsch, B. V. Sustained solar H2 evolution from a thiazolo[5, 4-d]thiazole-bridged covalent organic framework and nickel-thiolate cluster in water. J. Am. Chem. Soc. 2019, 141, 11082–11092.

[49]

Tian, F.; Chen, J.; Chen, F. X.; Liu, Y. L.; Xu, Y. Q.; Chen, R. Boosting hydrogen evolution over Ni6(SCH2Ph)12 nanocluster modified TiO2 via pseudo-Z-scheme interfacial charge transfer. Appl. Catal. B: Environ. 2021, 292, 120158.

[50]

Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Templated atom-precise galvanic synthesis and structure elucidation of a [Ag24Au(SR)18] nanocluster. Angew. Chem., Int. Ed. 2016, 55, 922–926.

[51]

Yang, H. Y.; Wang, Y.; Huang, H. Q.; Gell, L.; Lehtovaara, L.; Malola, S.; Häkkinen, H.; Zheng, N. F. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 2013, 4, 2422.

[52]

Desireddy, A.; Conn, B. E.; Guo, J. S.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U. et al. Ultrastable silver nanoparticles. Nature 2013, 501, 399–402.

[53]

Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. [Ag25(SR)18]: The “golden” silver nanoparticle. J. Am. Chem. Soc. 2015, 137, 11578–11581.

[54]

Su, H. F.; Wang, Y.; Ren, L. T.; Yuan, P.; Teo, B. K.; Lin, S. C.; Zheng, L. S.; Zheng, N. F. Fractal patterns in nucleation and growth of icosahedral core of [Au n Ag44− n (SC6H3F2)30]4− ( n = 0–12) via ab initio synthesis: Continuously tunable composition control. Inorg. Chem. 2019, 58, 259–264.

[55]

Liu, X.; Yuan, J. Y.; Yao, C. H.; Chen, J. S.; Li, L. L.; Bao, X. L.; Yang, J. L.; Wu, Z. K. Crystal and solution photoluminescence of MAg24(SR)18 (M = Ag/Pd/Pt/Au) nanoclusters and some implications for the photoluminescence mechanisms. J. Phys. Chem. C 2017, 121, 13848–13853.

[56]

Li, G.; Lei, Z.; Wang, Q. M. Luminescent molecular Ag-S nanocluster [Ag62S13(SBu t )32](BF4)4. J. Am. Chem. Soc. 2010, 132, 17678–17679.

[57]

Wang, Y.; Liu, X. H.; Wang, Q. K.; Quick, M.; Kovalenko, S. A.; Chen, Q. Y.; Koch, N.; Pinna, N. Insights into charge transfer at an atomically precise nanocluster/semiconductor interface. Angew. Chem., Int. Ed. 2020, 59, 7748–7754.

[58]

Du, L. X.; Wang, X. L.; Li, Y. H.; Wang, Y. L.; Zhao, J. J.; Fang, L. J.; Zheng, L. R.; Tong, H.; Yang, H. G. Isolation of single Pt atoms in a silver cluster: Forming highly efficient silver-based cocatalysts for photocatalytic hydrogen evolution. Chem. Commun. 2017, 53, 9402–9405.

[59]

Bootharaju, M. S.; Lee, C. W.; Deng, G. C.; Kim, H.; Lee, K.; Lee, S.; Chang, H.; Lee, S.; Sung, Y. E.; Yoo, J. S. et al. Atom-precise heteroatom core-tailoring of nanoclusters for enhanced solar hydrogen generation. Adv. Mater. 2023, 35, 2207765.

[60]

Chen, R.; Wang, L. L.; Yan, Y.; Lu, X.; Wang, X.; Yang, Q. Gold nanoclusters enhanced photocatalytic property of bismuth oxychloride. ChemistrySelect 2018, 3, 11922–11925.

[61]

Zhao, L. J.; Wang, S.; Wang, J. X.; Yu, H. X.; Zhao, C. Y.; Meng, L. Cage-shaped [P(W3O10)4]3− nanoclusters deposited carbon nitride to construct a dual-functional catalyst for photocatalytic mineralization wastewater and dye detector. J. Environ. Chem. Eng. 2022, 10, 107627.

[62]

Jing, W. T.; Shen, H.; Qin, R. X.; Wu, Q. Y.; Liu, K. L.; Zheng, N. F. Surface and interface coordination chemistry learned from model heterogeneous metal nanocatalysts: From atomically dispersed catalysts to atomically precise clusters. Chem. Rev. 2023, 123, 5948–6002.

[63]

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

[64]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[65]

Zhou, P.; Luo, M. C.; Guo, S. J. Optimizing the semiconductor-metal-single-atom interaction for photocatalytic reactivity. Nat. Rev. Chem. 2022, 6, 823–838.

[66]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[67]

DeRita, L.; Resasco, J.; Dai, S.; Boubnov, A.; Thang, H. V.; Hoffman, A. S.; Ro, I.; Graham, G. W.; Bare, S. R.; Pacchioni, G. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 2019, 18, 746–751.

[68]

Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; Delariva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

[69]

Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. H. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631–635.

[70]

Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

[71]

Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Antink, W. H.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.

[72]

Xu, H. P.; Rebollar, D.; He, H. Y.; Chong, L. N.; Liu, Y. Z.; Liu, C.; Sun, C. J.; Li, T.; Muntean, J. V.; Winans, R. E. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632.

[73]

Shan, J. Q.; Ye, C.; Zhu, C. Z.; Dong, J. C.; Xu, W. J.; Chen, L.; Jiao, Y.; Jiang, Y. L.; Song, L.; Zhang, Y. N. et al. Integrating interactive noble metal single-atom catalysts into transition metal oxide lattices. J. Am. Chem. Soc. 2022, 144, 23214–23222.

[74]

Lee, B. H.; Park, S.; Kim, M.; Sinha, A. K.; Lee, S. C.; Jung, E.; Chang, W. J.; Lee, K. S.; Kim, J. H.; Cho, S. P. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 2019, 18, 620–626.

[75]

Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.

[76]

Zhang, Y. M.; Zhao, J. H.; Wang, H.; Xiao, B.; Zhang, W.; Zhao, X. B.; Lv, T. P.; Thangamuthu, M.; Zhang, J.; Guo, Y. et al. Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56%. Nat. Commun. 2022, 13, 58.

[77]

Lu, F.; Yi, D.; Liu, S. J.; Zhan, F.; Zhou, B.; Gu, L.; Golberg, D.; Wang, X.; Yao, J. N. Engineering platinum-oxygen dual catalytic sites via charge transfer towards highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 17712–17718.

[78]

Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295–1301.

[79]

Hejazi, S.; Mohajernia, S.; Osuagwu, B.; Zoppellaro, G.; Andryskova, P.; Tomanec, O.; Kment, S.; Zbořil, R.; Schmuki, P. On the controlled loading of single platinum atoms as a co-catalyst on TiO2 anatase for optimized photocatalytic H2 generation. Adv. Mater. 2020, 32, 1908505.

[80]

Lee, C. W.; Lee, B. H.; Park, S.; Jung, Y.; Han, J.; Heo, J.; Lee, K.; Ko, W.; Yoo, S.; Bootharaju, M. S. et al. Photochemical tuning of dynamic defects for high-performance atomically dispersed catalysts. Nat. Mater. 2024, 23, 552–559.

[81]

Zhang, C. L.; Oliaee, S. N.; Hwang, S. Y.; Kong, X. K.; Peng, Z. M. A generic wet impregnation method for preparing substrate-supported platinum group metal and alloy nanoparticles with controlled particle morphology. Nano Lett. 2016, 16, 164–169.

[82]

Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of metal nanocrystal size reveals metal–support interface role for ceria catalysts. Science 2013, 341, 771–773.

[83]

Dong, C. Y.; Lian, C.; Hu, S. C.; Deng, Z. S.; Gong, J. Q.; Li, M. D.; Liu, H. L.; Xing, M. Y.; Zhang, J. L. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018, 9, 1252.

[84]

Shangguan, W. C.; Liu, Q.; Wang, Y.; Sun, N.; Liu, Y.; Zhao, R.; Li, Y. X.; Wang, C. Y.; Zhao, J. C. Molecular-level insight into photocatalytic CO2 reduction with H2O over Au nanoparticles by interband transitions. Nat. Commun. 2022, 13, 3894.

[85]

Ma, J. Y.; Tan, X. J.; Zhang, Q. Q.; Wang, Y.; Zhang, J. L.; Wang, L. Z. Exploring the size effect of Pt nanoparticles on the photocatalytic nonoxidative coupling of methane. ACS Catal. 2021, 11, 3352–3360.

[86]

Albero, J.; Peng, Y.; García, H. Photocatalytic CO2 reduction to C2+ products. ACS Catal. 2020, 10, 5734–5749.

[87]

Qian, X. Z.; Yang, W. Y.; Gao, S.; Xiao, J.; Basu, S.; Yoshimura, A.; Shi, Y. F.; Meunier, V.; Li, Q. Highly selective, defect-induced photocatalytic CO2 reduction to acetaldehyde by the Nb-doped TiO2 nanotube array under simulated solar illumination. ACS Appl. Mater. Interfaces 2020, 12, 55982–55993.

[88]

Feng, Y. Q.; Fu, F. Y.; Zeng, L. L.; Zhao, M. Y.; Xin, X.; Liang, J. K.; Zhou, M.; Fang, X. K.; Lv, H. J.; Yang, G. Y. Atomically precise silver clusters stabilized by lacunary polyoxometalates with photocatalytic CO2 reduction activity. Angew. Chem., Int. Ed. 2024, 63, e202317341.

[89]

Lee, B. H.; Gong, E.; Kim, M.; Park, S.; Kim, H. R.; Lee, J.; Jung, E.; Lee, C. W.; Bok, J.; Jung, Y. et al. Electronic interaction between transition metal single-atoms and anatase TiO2 boosts CO2 photoreduction with H2O. Energy Environ. Sci. 2022, 15, 601–609.

[90]

Ren, Y. Q.; Fu, Y. W.; Li, N. X.; You, C. J.; Huang, J.; Huang, K.; Sun, Z. K.; Zhou, J. C.; Si, Y. T.; Zhu, Y. H. et al. Concentrated solar CO2 reduction in H2O vapour with > 1% energy conversion efficiency. Nat. Commun. 2024, 15, 4675.

[91]

Liu, Y. P.; Annuar, A. B. M.; Rodríguez-Jiménez, S.; Yeung, C. W. S.; Wang, Q.; Coito, A. M.; Manuel, R. R.; Pereira, I. A. C.; Reisner, E. Solar fuel synthesis using a semiartificial colloidal Z-scheme. J. Am. Chem. Soc. 2024, 146, 29865–29876.

[92]

Huang, M. Y.; Bian, J. C.; Xiong, W.; Huang, C.; Zhang, R. Q. Low-dimensional Mo: BiVO4 photoanodes for enhanced photoelectrochemical activity. J. Mater. Chem. A 2018, 6, 3602–3609.

[93]
OECD. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options; OECD Publishing: Paris, 2022.
[94]

Kawai, T.; Sakata, T. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature 1980, 286, 474–476.

[95]

Uekert, T.; Kuehnel, M. F.; Wakerley, D. W.; Reisner, E. Plastic waste as a feedstock for solar-driven H2 generation. Energy Environ. Sci. 2018, 11, 2853–2857.

[96]

Zhang, S.; Li, H. B.; Wang, L.; Liu, J. D.; Liang, G. J.; Davey, K.; Ran, J. R.; Qiao, S. Z. Boosted photoreforming of plastic waste via defect-rich NiPS3 nanosheets. J. Am. Chem. Soc. 2023, 145, 6410–6419.

[97]

Uekert, T.; Kasap, H.; Reisner, E. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. J. Am. Chem. Soc. 2019, 141, 15201–15210.

[98]

Pichler, C. M.; Bhattacharjee, S.; Rahaman, M.; Uekert, T.; Reisner, E. Conversion of polyethylene waste into gaseous hydrocarbons via integrated tandem chemical-photo/electrocatalytic processes. ACS Catal. 2021, 11, 9159–9167.

[99]

Du, M. M.; Zhang, Y.; Kang, S. L.; Guo, X. Y.; Ma, Y. X.; Xing, M. Y.; Zhu, Y.; Chai, Y.; Qiu, B. C. Trash to treasure: Photoreforming of plastic waste into commodity chemicals and hydrogen over MoS2-tipped CdS nanorods. ACS Catal. 2022, 12, 12823–12832.

[100]

Bhattacharjee, S.; Guo, C. Z.; Lam, E.; Holstein, J. M.; Pereira, M. R.; Pichler, C. M.; Pornrungroj, C.; Rahaman, M.; Uekert, T.; Hollfelder, F. et al. Chemoenzymatic photoreforming: A sustainable approach for solar fuel generation from plastic feedstocks. J. Am. Chem. Soc. 2023, 145, 20355–20364.

[101]

Nguyen, T. K. A.; Trần-Phú, T.; Ta, X. M. C.; Truong, T. N.; Leverett, J.; Daiyan, R.; Amal, R.; Tricoli, A. Understanding structure–activity relationship in Pt-loaded g-C3N4 for efficient solar-photoreforming of polyethylene terephthalate plastic and hydrogen production. Small Methods 2024, 8, 2300427.

[102]

Li, M.; Zhang, S. B. Tandem chemical depolymerization and photoreforming of waste PET plastic to high-value-added chemicals. ACS Catal. 2024, 14, 2949–2958.

[103]

Lee, W. H.; Lee, C. W.; Cha, G. D.; Lee, B. H.; Jeong, J. H.; Park, H.; Heo, J.; Bootharaju, M. S.; Sunwoo, S. H.; Kim, J. H. et al. Floatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production. Nat. Nanotechnol. 2023, 18, 754–762.

[104]

Andrei, V.; Ucoski, G. M.; Pornrungroj, C.; Uswachoke, C.; Wang, Q.; Achilleos, D. S.; Kasap, H.; Sokol, K. P.; Jagt, R. A.; Lu, H. J. et al. Floating perovskite-BiVO4 devices for scalable solar fuel production. Nature 2022, 608, 518–522.

[105]

Wakerley, D. W.; Kuehnel, M. F.; Orchard, K. L.; Ly, K. H.; Rosser, T. E.; Reisner, E. Solar-driven reforming of lignocellulose to H2 with a CdS/CdO x photocatalyst. Nat. Energy 2017, 2, 17021.

[106]

Lee, B. H.; Shin, H.; Rasouli, A. S.; Choubisa, H.; Ou, P. F.; Dorakhan, R.; Grigioni, I.; Lee, G.; Shirzadi, E.; Miao, R. K. et al. Supramolecular tuning of supported metal phthalocyanine catalysts for hydrogen peroxide electrosynthesis. Nat. Catal. 2023, 6, 234–243.

[107]

Chung, M.; Maalouf, J. H.; Adams, J. S.; Jiang, C. Y.; Román-Leshkov, Y.; Manthiram, K. Direct propylene epoxidation via water activation over Pd-Pt electrocatalysts. Science 2024, 383, 49–55.

Carbon Future
Article number: 9200025
Cite this article:
Lee CW, Kim JH, Bootharaju MS, et al. Synthesis of high-performance photocatalysts for solar-driven hydrogen production and carbon dioxide reduction. Carbon Future, 2024, 1(4): 9200025. https://doi.org/10.26599/CF.2024.9200025

893

Views

194

Downloads

0

Crossref

Altmetrics

Received: 24 August 2024
Revised: 07 November 2024
Accepted: 07 December 2024
Published: 24 December 2024
© The Author(s) 2024.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.

Return