Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Design of oxide nanoparticles for biomedical applications

Abstract

Oxide nanoparticles have garnered significant attention in biomedical research owing to the numerous available synthetic approaches and highly tunable physicochemical properties, which enable diverse functions within biological systems. These nanoparticles can be broadly categorized based on their characteristics useful for biomedical applications. Magnetic oxide nanoparticles, for instance, are prominently used as contrast agents in MRI and as mediators to generate heat, mechanical force or electricity for therapy. Catalytic oxide nanoparticles can generate or eliminate reactive oxygen species, which are central to numerous biological processes. Porous oxide nanoparticles are adept at loading dye or drug molecules, making them invaluable for bioimaging and therapeutic interventions. In this Review, we highlight strategies for the fabrication and advanced engineering of oxide nanoparticles tailored for biomedical applications. We primarily focus on iron oxide, ceria and silica nanoparticles, delving into their diagnostic and therapeutic potentials. We also discuss future prospects and the challenges that must be addressed to meet clinical needs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oxide nanoparticles for biomedical applications.
Fig. 2: In vivo journey of intravenously injected nanoparticles.
Fig. 3: Magnetic oxide nanoparticles for imaging and therapy.
Fig. 4: ROS modulation by catalytic oxide nanoparticles.
Fig. 5: Porous oxide nanoparticles for dye and drug loading.

Similar content being viewed by others

References

  1. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    CAS  Google Scholar 

  2. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    CAS  Google Scholar 

  3. Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    PubMed  CAS  Google Scholar 

  4. Elghhanian, R. et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

    Google Scholar 

  5. Bruchez, M. Jr. et al. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    PubMed  CAS  Google Scholar 

  6. Chan, W. C. W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    PubMed  CAS  Google Scholar 

  7. Huang, H., Feng, W., Chen, Y. & Shi, J. Inorganic nanoparticles in clinical trials and translations. Nano Today 35, 100972 (2020).

    CAS  Google Scholar 

  8. Geng, H. et al. Noble metal nanoparticle biosensors: from fundamental studies toward point-of-care diagnostics. Acc. Chem. Res. 55, 593–604 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Hirschbiegel, C.-M. et al. Inorganic nanoparticles as scaffolds for bioorthogonal catalysts. Adv. Drug Deliv. Rev. 195, 114730 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Pelaz, B. et al. Diverse applications of nanomedicine. ACS Nano 11, 2313–2381 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Kwon, H. J. et al. Large-scale synthesis and medical applications of uniform sized metal oxide nanoparticles. Adv. Mater. 30, 1704290 (2018).

    Google Scholar 

  12. Park, J. et al. Ultra-large-scale synthesis of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004).

    PubMed  CAS  Google Scholar 

  13. Djurišić, A. B. et al. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small 11, 26–64 (2015).

    PubMed  Google Scholar 

  14. Jun, Y.-W. et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127, 5732–5733 (2005).

    PubMed  CAS  Google Scholar 

  15. Shin, T.-H. et al. High-resolution T1 MRI via renally clearable dextran nanoparticles with an iron oxide shell. Nat. Biomed. Eng. 5, 252–263 (2021).

    PubMed  CAS  Google Scholar 

  16. Lee, N. et al. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 115, 10637–10689 (2015).

    PubMed  CAS  Google Scholar 

  17. Ho, D., Sun, X. & Sun, S. Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 44, 875–882 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Ma, Z., Mohapatra, J., Wei, K., Liu, J. P. & Sun, S. Magnetic nanoparticles: synthesis, anisotropy, and applications. Chem. Rev. 123, 3904–3943 (2021).

    PubMed  Google Scholar 

  19. Scott, J. F. Applications of magnetoelectrics. J. Mater. Chem. 22, 4567–4574 (2012).

    CAS  Google Scholar 

  20. Carneiro, J. S., Williams, J., Gryko, A., Herrera, L. P. & Nikolla, E. Embracing the complexity of catalytic structures: a viewpoint on the synthesis of nonstoichiometric mixed oxides for catalysis. ACS Catal. 10, 516–527 (2020).

    CAS  Google Scholar 

  21. Tu, Z. et al. Design of therapeutic biomaterials to control inflammation. Nat. Rev. Mater. 7, 557–574 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Aragon-Sanabria, V. et al. Ultrasmall nanoparticle delivery of doxorubicin improves therapeutic index for high-grade glioma. Clin. Cancer Res. 28, 2938–2952 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Kim, D., Shin, K., Kwon, S. G. & Hyeon, T. Synthesis and biomedical applications of multifunctional nanoparticles. Adv. Mater. 30, 1802309 (2018).

    Google Scholar 

  24. Bee, A., Massart, R. & Neveu, S. Synthesis of very fine maghemite particles. J. Magn. Magn. Mater. 149, 6–9 (1995).

    CAS  Google Scholar 

  25. Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Google Scholar 

  26. Peng, X., Wickham, J. & Alivisatos, A. P. Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: ‘focusing’ of size distributions. J. Am. Chem. Soc. 120, 5343–5344 (1998).

    CAS  Google Scholar 

  27. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    PubMed  CAS  Google Scholar 

  28. Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    PubMed  CAS  Google Scholar 

  29. Silvera Batista, C. A., Larson, R. G. & Kotov, N. A. Nonadditivity of nanoparticle interactions. Science 350, 1242477 (2015).

    Google Scholar 

  30. Baumgartner, J. et al. Nucleation and growth of magnetite from solution. Nat. Mater. 12, 310–314 (2013).

    PubMed  CAS  Google Scholar 

  31. Lee, J., Yang, J., Kwon, S. G. & Hyeon, T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 1, 16034 (2016).

    CAS  Google Scholar 

  32. Li, D. et al. Nanoparticle assembly and oriented attachment: correlating controlling factors to the resulting structures. Chem. Rev. 123, 3127–3159 (2023).

    PubMed  CAS  Google Scholar 

  33. Kwon, S. G. et al. Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. Nat. Mater. 14, 215–223 (2015).

    PubMed  CAS  Google Scholar 

  34. Wheeler, K. E. et al. Environmental dimensions of the protein corona. Nat. Nanotechnol. 16, 617–629 (2021).

    PubMed  CAS  Google Scholar 

  35. Stater, E. P., Sonay, A. Y., Hart, C. & Grimm, J. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 16, 1180–1194 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Karakoti, A. S., Das, S., Thevuthasan, S. & Seal, S. Pegylated inorganic nanoparticles. Angew. Chem. Int. Ed. 50, 1980–1994 (2011).

    CAS  Google Scholar 

  37. Pelaz, B. et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9, 6996–7008 (2015).

    PubMed  CAS  Google Scholar 

  38. Fu, J., Wu, E., Li, G., Wang, B. & Zhan, C. Anti-PEG antibodies: current situation and countermeasures. Nano Today 55, 102163 (2024).

    CAS  Google Scholar 

  39. Poon, W., Kingston, B. R., Ouyang, B., Ngo, W. & Chan, W. C. W. A framework for designing delivery systems. Nat. Nanotechnol. 15, 819–829 (2020).

    PubMed  CAS  Google Scholar 

  40. Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 8, 282–300 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Nguyen, L. N. M. et al. The mechanisms of nanoparticle delivery to solid tumours. Nat. Rev. Bioeng. 2, 201–213 (2024).

    CAS  Google Scholar 

  42. Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).

    Google Scholar 

  43. Dillard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticle. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Google Scholar 

  44. Ngo, W. et al. Identifying cell receptors for the nanoparticle protein corona using genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).

    PubMed  CAS  Google Scholar 

  45. Choi, H. S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. van Leent, M. M. T. et al. Regulating trained immunity with nanomedicine. Nat. Rev. Mater. 7, 465–481 (2022).

    Google Scholar 

  47. Poon, W. et al. Elimination pathways of nanoparticles. ACS Nano 13, 5785–5798 (2019).

    PubMed  CAS  Google Scholar 

  48. Burns, A. A. et al. Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett. 9, 442–448 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Bourquin, J. et al. Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv. Mater. 30, 1704307 (2018).

    Google Scholar 

  50. Mahmoudi, M., Hofmann, H., Rothen-Rutishauser, B. & Petri-Fink, A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem. Rev. 112, 2323–2338 (2012).

    PubMed  CAS  Google Scholar 

  51. Arami, H., Khandhar, A., Liggitt, D. & Krishnan, K. M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 44, 8576–8607 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Feliu, N. et al. In vivo degeneration and the fate of inorganic nanoparticles. Chem. Soc. Rev. 45, 2440–2457 (2016).

    PubMed  CAS  Google Scholar 

  53. Mahmoudi, M., Laurent, S., Shokrgozar, M. A. & Hosseinkhani, M. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell ‘vision’ versus physicochemical properties of nanoparticles. ACS Nano 5, 7263–7276 (2011).

    PubMed  CAS  Google Scholar 

  54. World Health Organisation & International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Silica, Some Silicates, Coal Dust and Para-Aramid Fibrils Vol. 68 (IARC, 1997).

  55. US Food and Drug Administration. GRAS Substances (SCOGS) database. FDA https://www.fda.gov/food/generally-recognized-safe-gras/gras-substances-scogs-database (2020).

  56. Croissant, J. G., Butler, K. S., Zink, J. I. & Brinker, C. J. Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications. Nat. Rev. Mater. 5, 886–909 (2020).

    CAS  Google Scholar 

  57. Zhang, H. et al. Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic. J. Am. Chem. Soc. 134, 15790–15804 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Chen, Y. et al. Colloidal HPMO nanoparticles: silica-etching chemistry tailoring, topological transformation, and nano-biomedical applications. Adv. Mater. 25, 3100–3105 (2013).

    PubMed  CAS  Google Scholar 

  59. Slowing, I. I., Wu, C.-W., Vivero-Escoto, J. L. & Lin, V. S.-Y. Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small 5, 57–62 (2009).

    PubMed  CAS  Google Scholar 

  60. Kim, B. H. et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 133, 12624–12631 (2011).

    PubMed  CAS  Google Scholar 

  61. Lu, Y. et al. Iron oxide nanoclusters for T1 magnetic resonance imaging of non-human primates. Nat. Biomed. Eng. 1, 637–643 (2017).

    PubMed  CAS  Google Scholar 

  62. Li, H. & Meade, T. J. Molecular magnetic resonance imaging with Gd(III)-based contrast agents: challenges and key advances. J. Am. Chem. Soc. 141, 17025–17041 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Ning, Y. et al. Molecular MRI quantification of extracellular aldehyde pairs for early detection of liver fibrogenesis and response to treatment. Sci. Transl Med. 14, eabq6297 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Chen, H. H. et al. A nanoparticle probe for the imaging of autophagic flux in live mice via magnetic resonance and near-infrared fluorescence. Nat. Biomed. Eng. 6, 1045–1056 (2022).

    PubMed  CAS  Google Scholar 

  65. Lu, C. et al. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem. Soc. Rev. 50, 8102–8146 (2021).

    PubMed  CAS  Google Scholar 

  66. Yang, X. et al. Nanotechnology enables novel modalities for neuromodulation. Adv. Mater. 33, 2103208 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhou, H., Mayorga-Martinez, C. C., Pané, S., Zhang, L. & Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 121, 4999–5041 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Qiao, R. et al. Magnetic iron oxide nanoparticles for brain imaging and drug delivery. Adv. Drug Deliv. Rev. 197, 114822 (2023).

    PubMed  CAS  Google Scholar 

  69. Kim, D. et al. Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc. 131, 454–455 (2009).

    PubMed  CAS  Google Scholar 

  70. Vreeland, E. C. et al. Enhanced nanoparticle size control by extending LaMer’s mechanism. Chem. Mater. 27, 6059–6066 (2015).

    CAS  Google Scholar 

  71. Zhang, H. et al. A hepatocyte-targeting nanoparticle for enhanced hepatobiliary magnetic resonance imaging. Nat. Biomed. Eng. 7, 221–235 (2023).

    PubMed  CAS  Google Scholar 

  72. Lee, N. & Hyeon, T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev. 41, 2575–2589 (2012).

    PubMed  CAS  Google Scholar 

  73. Min, C. et al. Mechanism of magnetic relaxation switching sensing. ACS Nano 6, 6821–6828 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Josephson, L., Perez, J. M. & Weissleder, R. Magnetic nanosensors for the detection of oligonucleotide sequences. Angew. Chem. Int. Ed. 40, 3204–3206 (2001).

    CAS  Google Scholar 

  75. Perez, J. M., Josephson, L., O’Loughlin, T., Högemann, D. & Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20, 816–820 (2002).

    PubMed  CAS  Google Scholar 

  76. Lu, J. et al. Highly sensitive diagnosis of small hepatocellular carcinoma using pH-responsive iron oxide nanocluster assemblies. J. Am. Chem. Soc. 140, 10071–10074 (2018).

    PubMed  CAS  Google Scholar 

  77. Zhang, P. et al. Quantitative mapping of glutathione within intracranial tumors through interlocked MRI signals of a responsive nanoprobe. Angew. Chem. Int. Ed. 60, 8130–8138 (2021).

    CAS  Google Scholar 

  78. Gallo, J. et al. CXCR4-targeted and MMP-responsive iron oxide nanoparticles for enhanced magnetic resonance imaging. Angew. Chem. Int. Ed. 53, 9550–9554 (2014).

    CAS  Google Scholar 

  79. Okada, S. et al. Calcium-dependent molecular fMRI using a magnetic nanosensor. Nat. Nanotechnol. 13, 473–477 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Hsieh, V. et al. Neurotransmitter-responsive nanosensors for T2-weighted magnetic resonance imaging. J. Am. Chem. Soc. 141, 15751–15754 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Lee, H., Sun, E., Ham, D. & Weissleder, R. Chip–NMR biosensor for detection and molecular analysis of cells. Nat. Med. 14, 869–874 (2008).

    PubMed  PubMed Central  Google Scholar 

  82. Choi, J.-S. et al. Distance-dependent magnetic resonance tuning as a versatile MRI sensing platform for biological targets. Nat. Mater. 16, 537–542 (2017).

    PubMed  CAS  Google Scholar 

  83. Wang, Z. et al. Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging. Nat. Nanotechnol. 15, 482–490 (2020).

    PubMed  PubMed Central  Google Scholar 

  84. Lu, H. et al. A pH-responsive T1T2 dual-modal MRI contrast agent for cancer imaging. Nat. Commun. 13, 798 (2022).

    Google Scholar 

  85. Wang, C. et al. An electric-field-responsive paramagnetic contrast agent enhances the visualization of epileptic foci in mouse models of drug-resistant epilepsy. Nat. Biomed. Eng. 5, 278–289 (2021).

    PubMed  CAS  Google Scholar 

  86. Subbiah, V. The next generation of evidence-based medicine. Nat. Med. 29, 49–58 (2023).

    PubMed  CAS  Google Scholar 

  87. Xie, X. et al. Magnetic particle imaging: from tracer design to biomedical applications in vasculature abnormality. Adv. Mater. 36, 2306450 (2024).

    CAS  Google Scholar 

  88. Tong, S., Quinto, C. A., Zhang, L., Mohindra, P. & Bao, G. Size-dependent heating of magnetic iron oxide nanoparticles. ACS Nano 11, 6808–6816 (2017).

    PubMed  CAS  Google Scholar 

  89. Chen, R., Christiansen, M. G. & Anikeeva, P. Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. ACS Nano 7, 8990–9000 (2013).

    PubMed  CAS  Google Scholar 

  90. Kang, T. et al. Penetrative and sustained drug delivery using injectable hydrogel nanocomposites for post-surgical brain tumor treatment. ACS Nano 17, 5435–5447 (2023).

    PubMed  CAS  Google Scholar 

  91. Lee, J.-H. et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6, 418–422 (2011).

    PubMed  CAS  Google Scholar 

  92. Yun, H. et al. Size- and composition-dependent radio frequency magnetic permeability of iron oxide nanocrystals. ACS Nano 8, 12323–12337 (2014).

    PubMed  CAS  Google Scholar 

  93. Gavilán, H. et al. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem. Soc. Rev. 50, 11614–11667 (2021).

    PubMed  Google Scholar 

  94. Benfenati, F. & Lanzani, G. Clinical translation of nanoparticles for neural stimulation. Nat. Rev. Mater. 6, 1–4 (2021).

    Google Scholar 

  95. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Koivisto, A.-P., Belvisi, M. G., Gaudet, R. & Szallasi, A. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat. Rev. Drug Discov. 21, 41–59 (2022).

    PubMed  CAS  Google Scholar 

  97. Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M. & Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5, 602–606 (2010).

    PubMed  CAS  Google Scholar 

  98. Chen, R., Romero, G., Christiansen, M. G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480 (2015).

    PubMed  CAS  Google Scholar 

  99. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    PubMed  CAS  Google Scholar 

  100. Sebesta, C. et al. Subsecond multichannel magnetic control of select neural circuits in freely moving flies. Nat. Mater. 21, 951–958 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Seynhaeve, A. L. B., Amin, M., Haemmerich, D., van Rhoon, G. C. & ten Hagen, T. L. M. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv. Drug Deliv. Rev. 163–164, 125–144 (2020).

    PubMed  Google Scholar 

  102. Rao, S. et al. Remotely controlled chemomagnetic modulation of targeted neural circuits. Nat. Nanotechnol. 14, 967–973 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Croissant, J. & Zink, J. I. Nanovalve-controlled cargo release activated by plasmonic heating. J. Am. Chem. Soc. 134, 7628–7631 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Derfus, A. M. et al. Remotely triggered release from magnetic nanoparticles. Adv. Mater. 19, 3932–3936 (2007).

    CAS  Google Scholar 

  105. Kunz, P. C. et al. Metal carbonyls supported on iron oxide nanoparticles to trigger the CO-gasotransmitter release by magnetic heating. Chem. Commun. 49, 4896–4898 (2013).

    CAS  Google Scholar 

  106. Riedinger, A. et al. Subnanometer local temperature probing and remotely controlled drug release based on azo-functionalized iron oxide nanoparticles. Nano Lett. 13, 2399–2406 (2013).

    PubMed  CAS  Google Scholar 

  107. Liu, S. et al. Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles. Nat. Biomed. Eng. 4, 1063–1075 (2020).

    PubMed  CAS  Google Scholar 

  108. Mirvakili, S. M. & Langer, R. Wireless on-demand drug delivery. Nat. Electron. 4, 464–477 (2021).

    Google Scholar 

  109. Chen, J. et al. Enhancing aortic valve drug delivery with PAR2-targeting magnetic nano-cargoes for calcification alleviation. Nat. Commun. 15, 557 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Liu, Y.-L., Chen, D., Shang, P. & Yin, D.-C. A review of magnet systems for targeted drug delivery. J. Control. Rel. 302, 90–104 (2019).

    CAS  Google Scholar 

  111. Zhou, Z., Shen, Z. & Chen, X. Tale of two magnets: an advanced magnetic targeting system. ACS Nano 14, 7–11 (2020).

    PubMed  CAS  Google Scholar 

  112. Carrey, J. & Hallali, N. Torque undergone by assemblies of single-domain magnetic nanoparticles submitted to a rotating magnetic field. Phys. Rev. B 94, 184420 (2016).

    Google Scholar 

  113. Leulmi, S. et al. Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane. Nanoscale 7, 15904–15914 (2015).

    PubMed  CAS  Google Scholar 

  114. Lee, J.-U. et al. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. Nat. Mater. 20, 1029–1036 (2021).

    PubMed  CAS  Google Scholar 

  115. Wu, C. et al. Recent advances in magnetic-nanomaterial-based mechanotransduction for cell fate regulation. Adv. Mater. 30, 1705673 (2018).

    Google Scholar 

  116. Jang, J. T. et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed. 48, 1234–1238 (2009).

    CAS  Google Scholar 

  117. Guo, J., Yang, W. & Wang, C. Magnetic colloidal supraparticles: design, fabrication and biomedical applications. Adv. Mater. 25, 5196–5214 (2013).

    PubMed  CAS  Google Scholar 

  118. Luo, B. et al. Mesoporous biocompatible and acid-degradable magnetic colloidal nanocrystal clusters with sustainable stability and high hydrophobic drug loading capacity. ACS Nano 5, 1428–1435 (2011).

    PubMed  CAS  Google Scholar 

  119. Bai, F. et al. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem. Int. Ed. 46, 6650–6653 (2007).

    CAS  Google Scholar 

  120. Kim, D. et al. Multiplexible wash-free immunoassay using colloidal assemblies of magnetic and photoluminescent nanoparticles. ACS Nano 11, 8448–8455 (2017).

    PubMed  CAS  Google Scholar 

  121. Tay, A., Kunze, A., Murray, C. & Carlo, D. D. Induction of calcium influx in cortical neural networks by nanomagnetic forces. ACS Nano 10, 2331–2341 (2016).

    PubMed  CAS  Google Scholar 

  122. Zhang, E. et al. Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation. ACS Nano 8, 3192–3201 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  123. Chen, M. et al. Remote control of mechanical forces via mitochondrial-targeted magnetic nanospinners for efficient cancer treatment. Small 16, 1905424 (2020).

    CAS  Google Scholar 

  124. Hillion, A. et al. Real-time observation and analysis of magnetomechanical actuation of magnetic nanoparticles in cells. Nano Lett. 22, 1986–1991 (2022).

    PubMed  CAS  Google Scholar 

  125. Sebastian, V. in Magnetoelectric Polymer-Based Composites: Fundamentals and Applications (eds Lanceros-Méndez, S. & Martins, P.) 125–151 (Wiley, 2017).

  126. Lee, J.-H. et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13, 95–99 (2007).

    PubMed  CAS  Google Scholar 

  127. Lamouri, R. et al. Size effect on the magnetic properties of CoFe2O4 nanoparticles: a Monte Carlo study. Ceram. Int. 46, 8092–8096 (2020).

    CAS  Google Scholar 

  128. Kozielski, K. L. et al. Nonresonant powering of injectable nanoelectrodes enables wireless deep brain stimulation in freely moving mice. Sci. Adv. 7, eabc4189 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  129. Zhang, Y. et al. Magnetoelectric nanoparticles incorporated biomimetic matrix for wireless electrical stimulation and nerve regeneration. Adv. Healthc. Mater. 10, 2100695 (2021).

    CAS  Google Scholar 

  130. Kim, Y. J. et al. Magnetoelectric nanodiscs enable wireless transgene-free neuromodulation. Nat. Nanotechnol. 20, 121–131 (2025).

    PubMed  CAS  Google Scholar 

  131. Song, H. et al. Multi-target cell therapy using a magnetoelectric microscale biorobot for targeted delivery and selective differentiation of SH-SY5Y cells via magnetically driven cell stamping. Mater. Horiz. 9, 3031–3038 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  132. Mushtag, F. et al. Magnetoelectric 3D scaffolds for enhanced bone cell proliferation. Appl. Mater. Today 16, 290–300 (2019).

    Google Scholar 

  133. Jang, J. & Park, C. B. Magnetoelectric dissociation of Alzheimer’s β-amyloid aggregates. Sci. Adv. 8, eabn1675 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Nair, M. et al. Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nat. Commun. 4, 1707 (2013).

    PubMed  Google Scholar 

  135. Rodzinski, A. et al. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles. Sci. Rep. 6, 20867 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Zhang, C. et al. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew. Chem. Int. Ed. 55, 2101–2106 (2016).

    CAS  Google Scholar 

  137. Yang, B., Chen, Y. & Shi, J. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 119, 4881–4985 (2019).

    PubMed  CAS  Google Scholar 

  138. Lin, H., Chen, Y. & Shi, J. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 47, 1938–1958 (2018).

    PubMed  CAS  Google Scholar 

  139. Zhou, Z., Song, J., Nie, L. & Chen, X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 45, 6597–6626 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  140. Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022).

    PubMed  CAS  Google Scholar 

  141. Nath, I., Chakraborty, J. & Verpoort, F. Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. Chem. Soc. Rev. 45, 4127–4170 (2016).

    PubMed  CAS  Google Scholar 

  142. Zhang, R., Yan, X. & Fan, K. Nanozymes inspired by natural enzymes. Acc. Mater. Res. 2, 534–547 (2021).

    CAS  Google Scholar 

  143. Tang, Z., Zhao, P., Wang, H., Liu, Y. & Bu, W. Biomedicine meets Fenton chemistry. Chem. Rev. 121, 1981–2019 (2021).

    PubMed  CAS  Google Scholar 

  144. Zhao, P., Li, H. & Bu, W. A forward vision for chemodynamic therapy: issues and opportunities. Angew. Chem. Int. Ed. 62, e202210415 (2023).

    CAS  Google Scholar 

  145. Lin, L.-S. et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J. Am. Chem. Soc. 141, 9937–9945 (2019).

    PubMed  CAS  Google Scholar 

  146. Lin, L.-S. et al. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem. Int. Ed. 57, 4902–4906 (2018).

    CAS  Google Scholar 

  147. Zhou, Y., Fan, S., Feng, L., Huang, X. & Chen, X. Manipulating intratumoral Fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy. Adv. Mater. 33, 2104223 (2021).

    CAS  Google Scholar 

  148. Tian, Q. et al. Recent advances in enhanced chemodynamic therapy strategies. Nano Today 39, 101162 (2021).

    CAS  Google Scholar 

  149. Tang, Z., Liu, Y., He, M. & Bu, W. Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew. Chem. Int. Ed. 58, 946–956 (2019).

    CAS  Google Scholar 

  150. Koo, S. et al. Enhanced chemodynamic therapy by Cu–Fe peroxide nanoparticles: tumor microenvironment-mediated synergistic Fenton reaction. ACS Nano 16, 2535–2545 (2022).

    PubMed  CAS  Google Scholar 

  151. Feng, W. et al. Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows. Adv. Mater. 31, 1805919 (2019).

    Google Scholar 

  152. Sang, Y. et al. Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy. J. Am. Chem. Soc. 142, 5177–5183 (2020).

    PubMed  CAS  Google Scholar 

  153. Chen, X. et al. NIR-triggered intracellular H+ transients for lamellipodia-collapsed antimetastasis and enhanced chemodynamic therapy. Angew. Chem. Int. Ed. 60, 21905–21910 (2021).

    CAS  Google Scholar 

  154. Shi, L. et al. An acidity-unlocked magnetic nanoplatform enables self-boosting ROS generation through upregulation of lactate for imaging-guided highly specific chemodynamic therapy. Angew. Chem. Int. Ed. 60, 9562–9572 (2021).

    CAS  Google Scholar 

  155. Liu, Y. et al. Engineering multifunctional RNAi nanomedicine to concurrently target cancer hallmarks for combinatorial therapy. Angew. Chem. Int. Ed. 57, 1510–1513 (2018).

    CAS  Google Scholar 

  156. Zhao, Z. et al. Reactive oxygen species-activatable liposomes regulating hypoxic tumor microenvironment for synergistic photo/chemodynamic therapies. Adv. Funct. Mater. 29, 1905013 (2019).

    CAS  Google Scholar 

  157. Sun, Q. et al. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord. Chem. Rev. 451, 214267 (2022).

    CAS  Google Scholar 

  158. Koo, S., Kim, Y. G., Lee, N., Hyeon, T. & Kim, D. Inorganic nanoparticle agents for enhanced chemodynamic therapy of tumors. Nanoscale 15, 13498–13514 (2023).

    PubMed  CAS  Google Scholar 

  159. Kim, Y. G. et al. Ceria-based therapeutic antioxidants for biomedical applications. Adv. Mater. 36, 2210819 (2024).

    CAS  Google Scholar 

  160. Dutta, P. et al. Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles. Chem. Mater. 18, 5144–5146 (2006).

    CAS  Google Scholar 

  161. Nolan, M., Grigoleit, S., Sayle, D. C., Parker, S. C. & Watson, G. W. Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria. Surf. Sci. 576, 217–229 (2005).

    CAS  Google Scholar 

  162. Esch, F. et al. Electron localization determines defect formation on ceria substrates. Science 309, 752–755 (2005).

    PubMed  CAS  Google Scholar 

  163. Gupta, A., Das, S., Neal, C. J. & Seal, S. Controlling the surface chemistry of cerium oxide nanoparticles for biological applications. J. Mater. Chem. B 4, 3195–3202 (2016).

    PubMed  CAS  Google Scholar 

  164. Soh, M. et al. Ceria–zirconia nanoparticles as an enhanced multi-antioxidant for sepsis treatment. Angew. Chem. Int. Ed. 56, 11399–11403 (2017).

    CAS  Google Scholar 

  165. Han, S. I. et al. Epitaxially strained CeO2/Mn3O4 nanocrystals as an enhanced antioxidant for radioprotection. Adv. Mater. 32, 2001566 (2020).

    CAS  Google Scholar 

  166. Jiang, P. et al. Tuning oxidant and antioxidant activities of ceria by anchoring copper single-site for antibacterial application. Nat. Commun. 15, 1010 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  167. Chen, J., Patil, S., Seal, S. & McGinnis, J. F. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat. Nanotechnol. 1, 142–150 (2006).

    PubMed  CAS  Google Scholar 

  168. He, L. et al. Highly bioactive zeolitic imidazolate framework-8-capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke. Sci. Adv. 6, eaay9751 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  169. Ji, W. et al. Self-catalytic small interfering RNA nanocarriers for synergistic treatment of neurodegenerative diseases. Adv. Mater. 34, 2105711 (2022).

    CAS  Google Scholar 

  170. Feng, Y. et al. A ferroptosis-targeting ceria anchored halloysite as orally drug delivery system for radiation colitis therapy. Nat. Commun. 14, 5083 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  171. Fu, X. et al. Small molecule-assisted assembly of multifunctional ceria nanozymes for synergistic treatment of atherosclerosis. Nat. Commun. 13, 6528 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  172. Im, G.-B. et al. Ceria nanoparticles as copper chaperones that activate SOD1 for synergistic antioxidant therapy to treat ischemic vascular diseases. Adv. Mater. 35, 2208989 (2023).

    CAS  Google Scholar 

  173. Yao, C. et al. Dynamic assembly of DNA–ceria nanocomplex in living cells generates artificial peroxisome. Nat. Commun. 13, 7739 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  174. Weng, Q. et al. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat. Commun. 12, 1436 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  175. Koo, S. et al. Ceria–vesicle nanohybrid therapeutic for modulation of innate and adaptive immunity in a collagen-induced arthritis model. Nat. Nanotechnol. 18, 1502–1514 (2023).

    PubMed  CAS  Google Scholar 

  176. Lasting impact of lipid nanoparticles. Nat. Rev. Mater. 6, 1071 (2021).

  177. van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).

    PubMed  PubMed Central  Google Scholar 

  178. Shen, S. et al. A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nat. Nanotechnol. 16, 104–113 (2021).

    PubMed  CAS  Google Scholar 

  179. Li, Y. et al. Co-delivery of precisely prescribed multi-prodrug combination by an engineered nanocarrier enables efficient individualized cancer chemotherapy. Adv. Mater. 34, 2110490 (2022).

    CAS  Google Scholar 

  180. Janjua, T. I., Cao, Y., Yu, C. & Popat, A. Clinical translation of silica nanoparticles. Nat. Rev. Mater. 6, 1072–1074 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  181. Zhang, Y. et al. Mesoporous carbon in biomedicine: modification strategies and biocompatibility. Carbon 212, 118121 (2023).

    CAS  Google Scholar 

  182. Wang, S. et al. Colloidal crystal engineering with metal-organic framework nanoparticles and DNA. Nat. Commun. 11, 2495 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  183. Rabiee, N. Sustainable metal-organic frameworks (MOFs) for drug delivery systems. Mater. Today Commun. 35, 106244 (2023).

    CAS  Google Scholar 

  184. Huang, N., Wang, P. & Jiang, D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1, 16068 (2016).

    CAS  Google Scholar 

  185. Zhang, W. et al. Red-fluorescent covalent organic framework nanospheres for trackable anticancer drug delivery. ACS Appl. Mater. Interfaces 16, 342–352 (2024).

    PubMed  CAS  Google Scholar 

  186. Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).

    PubMed  CAS  Google Scholar 

  187. Burns, A., Ow, H. & Wiesner, U. Fluorescent core–shell silica nanoparticles: towards ‘Lab on a Particle’ architectures for nanobiotechnology. Chem. Soc. Rev. 35, 1028–1042 (2006).

    PubMed  CAS  Google Scholar 

  188. Phillips, E. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl Med. 6, 260ra149 (2014).

    PubMed  PubMed Central  Google Scholar 

  189. Gawne, P. J., Ferreira, M., Papaluca, M., Grimm, J. & Decuzzi, P. New opportunities and old challenges in the clinical translation of nanotheranostics. Nat. Rev. Mater. 8, 783–798 (2023).

    PubMed  PubMed Central  Google Scholar 

  190. Liu, J. et al. A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain. Nat. Nanotechnol. 15, 321–330 (2020).

    PubMed  CAS  Google Scholar 

  191. Liu, J. et al. A highly sensitive and selective nanosensor for near-infrared potassium imaging. Sci. Adv. 6, eaax9757 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  192. Yun, S. H. & Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 1, 0008 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  193. Chen, G., Qiu, H., Prasad, P. N. & Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  194. Montalti, M., Prodi, L., Rampazzo, E. & Zaccheroni, N. Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem. Soc. Rev. 43, 4243–4268 (2014).

    PubMed  CAS  Google Scholar 

  195. Li, Z. & Zhang, Y. Monodisperse silica-coated polyvinyl-pyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew. Chem. Int. Ed. 45, 7732–7735 (2006).

    CAS  Google Scholar 

  196. Liu, J. et al. Real-time in vivo quantitative monitoring of drug release by dual-mode magnetic resonance and upconverted luminescence imaging. Angew. Chem. Int. Ed. 53, 4551–4555 (2014).

    CAS  Google Scholar 

  197. Lee, J. E. et al. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J. Am. Chem. Soc. 132, 552–557 (2010).

    PubMed  CAS  Google Scholar 

  198. Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F. & Zink, J. I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590–2605 (2012).

    PubMed  CAS  Google Scholar 

  199. Mora-Raimundo, P., Lozano, D., Manzano, M. & Vallet-Regi, M. Nanoparticles to knockdown osteoporosis-related gene and promote osteogenic marker expression for osteoporosis treatment. ACS Nano 13, 5451–5464 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  200. Wang, X.-D., Rabe, K. S., Ahmed, I. & Niemeyer, C. M. Multifunctional silica nanoparticles for covalent immobilization of highly sensitive proteins. Adv. Mater. 27, 7945–7950 (2015).

    PubMed  CAS  Google Scholar 

  201. Kim, M.-H. et al. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 5, 3568–3576 (2011).

    PubMed  CAS  Google Scholar 

  202. Hartono, S. B. et al. Poly-l-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. ACS Nano 6, 2104–2117 (2012).

    PubMed  CAS  Google Scholar 

  203. Niu, D. et al. Monodispersed and ordered large-pore mesoporous silica nanospheres with tunable pore structure for magnetic functionalization and gene delivery. Adv. Mater. 26, 4947–4953 (2014).

    PubMed  CAS  Google Scholar 

  204. Kwon, D. et al. Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering IL-4. Nano Lett. 17, 2747–2756 (2017).

    PubMed  CAS  Google Scholar 

  205. Lee, B. et al. Co-delivery of metabolic modulators leads to simultaneous lactate metabolism inhibition and intracellular acidification for synergistic cancer therapy. Adv. Mater. 35, 2305512 (2023).

    CAS  Google Scholar 

  206. Ruskowitz, E. R. & DeForest, C. A. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater. 3, 17087 (2018).

    CAS  Google Scholar 

  207. Yuan, Q. et al. Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid. ACS Nano 6, 6337–6344 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  208. Liu, J., Bu, W., Pan, L. & Shi, J. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem. Int. Ed. 52, 4375–4379 (2013).

    CAS  Google Scholar 

  209. Guardado-Alvarez, T. M., Devi, L. S., Russell, M. M., Schwartz, B. J. & Zink, J. I. Activation of snap-top capped mesoporous silica nanocontainers using two near-infrared photons. J. Am. Chem. Soc. 135, 14000–14003 (2013).

    PubMed  CAS  Google Scholar 

  210. He, D., He, X., Wang, K., Cao, J. & Zhao, Y. A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles. Langmuir 28, 4003–4008 (2012).

    PubMed  CAS  Google Scholar 

  211. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    PubMed  CAS  Google Scholar 

  212. Zhu, J. et al. Stimuli-responsive delivery vehicles based on mesoporous silica nanoparticles: recent advances and challenges. J. Mater. Chem. B 5, 1339–1352 (2017).

    PubMed  CAS  Google Scholar 

  213. Wen, J. et al. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem. Soc. Rev. 46, 6024–6045 (2017).

    PubMed  CAS  Google Scholar 

  214. Terstappen, G. C., Meyer, A. H., Bell, R. D. & Zhang, W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov. 20, 362–383 (2021).

    PubMed  CAS  Google Scholar 

  215. Tang, W. et al. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev. 48, 2967–3014 (2019).

    PubMed  CAS  Google Scholar 

  216. Baik, S.et al. Orally deliverable iron-ceria nanotablets for treatment of inflammatory bowel disease. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202401994 (2024).

  217. Zhao, S. et al. An orally administered CeO2@montmorillonite nanozyme targets inflammation for inflammatory bowel disease therapy. Adv. Funct. Mater. 30, 2004692 (2020).

    CAS  Google Scholar 

  218. Naha, P. C. et al. Dextran-coated cerium oxide nanoparticles: a computed tomography contrast agent for imaging the gastrointestinal tract and inflammatory bowel disease. ACS Nano 14, 10187–10197 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  219. Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).

    CAS  Google Scholar 

  220. Kim, B. et al. Securing the payload, finding the cell, and avoiding the endosome: peptide-targeted, fusogenic porous silicon nanoparticles for delivery of siRNA. Adv. Mater. 31, 1902952 (2019).

    Google Scholar 

  221. Foss, D. V. et al. Peptide-mediated delivery of CRISPR enzymes for the efficient editing of primary human lymphocytes. Nat. Biomed. Eng. 7, 647–660 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  222. Ngamcherdtrakul, W. et al. Cationic polymer modified mesoporous silica nanoparticles for targeted siRNA delivery to HER2+ breast cancer. Adv. Funct. Mater. 25, 2646–2659 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  223. Shen, D. et al. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 14, 923–932 (2014).

    PubMed  CAS  Google Scholar 

  224. Huang, P. et al. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J. Am. Chem. Soc. 139, 1275–1284 (2017).

    PubMed  CAS  Google Scholar 

  225. Park, J.-H. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8, 331–336 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  226. Du, B., Yu, M. & Zheng, J. Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater. 3, 358–374 (2018).

    Google Scholar 

  227. Pan, L. et al. Cascade catalytic nanoparticles selectively alkalize cancerous lysosomes to suppress cancer progression and metastasis. Adv. Mater. 36, 2305394 (2024).

    CAS  Google Scholar 

  228. Kim, J. et al. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano 13, 3206–3217 (2019).

    PubMed  CAS  Google Scholar 

  229. Kim, J. et al. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J. Am. Chem. Soc. 139, 10992–10995 (2017).

    PubMed  CAS  Google Scholar 

  230. Zhou, Y. et al. Superexchange effects on oxygen reduction activity of edge-sharing [CoxMn1−xO6] octahedra in spinel oxide. Adv. Mater. 30, 1705407 (2018).

    Google Scholar 

  231. Li, J., Chu, D., Dong, H., Baker, D. R. & Jiang, R. Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides. J. Am. Chem. Soc. 142, 50–54 (2020).

    PubMed  CAS  Google Scholar 

  232. Colombo, M. et al. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41, 4306–4334 (2012).

    PubMed  CAS  Google Scholar 

  233. Frey, N. A., Peng, S., Cheng, K. & Sun, S. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  234. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01770353 (2019).

  235. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04682847 (2024).

  236. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT05359783 (2024).

  237. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04261777 (2024).

  238. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00368589 (2015).

  239. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02319278 (2017).

  240. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03948555 (2021).

  241. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02511028 (2024).

  242. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT05357833 (2023).

  243. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03619850 (2024).

  244. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04268849 (2023).

  245. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04278651 (2024).

  246. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04205266 (2023).

  247. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04080908 (2023).

  248. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT06271421 (2024).

  249. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT05010759 (2023).

  250. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01266096 (2023).

  251. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03465618 (2024).

  252. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00848042 (2017).

  253. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02680535 (2021).

  254. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04240639 (2023).

  255. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04656678 (2024).

  256. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03667430 (2018).

  257. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03823027 (2019).

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (grant number IBS-R006-D1) and National Research Foundation of Korea (grant numbers 2022R1A2C1003527 and RS-2024-00350999).

Author information

Authors and Affiliations

Authors

Contributions

B.L., D.K. and T.H. contributed to the conception of the manuscript, writing the initial draft and designing the figures. All authors reviewed and edited the manuscript.

Corresponding authors

Correspondence to Dokyoon Kim or Taeghwan Hyeon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Jan Grimm, who co-reviewed with Karla Ximena Vazquez Prada; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B., Lee, Y., Lee, N. et al. Design of oxide nanoparticles for biomedical applications. Nat Rev Mater 10, 252–267 (2025). https://doi.org/10.1038/s41578-024-00767-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-024-00767-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research